Skip to Content
Python Deep Learning - Second Edition
book

Python Deep Learning - Second Edition

by Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
January 2019
Intermediate to advanced
386 pages
11h 13m
English
Packt Publishing
Content preview from Python Deep Learning - Second Edition

Logistic regression

Logistic regression uses logistic sigmoid activation, in contrast to linear regression, which uses the identity function. As we've seen before, the output of the logistic sigmoid is in the (0,1) range and can be interpreted as a probability function. We can use logistic regression for a 2-class (binary) classification problem, where our target, t, can have two values, usually 0 and 1 for the two corresponding classes. These discrete values shouldn't be confused with the values of the logistic sigmoid function, which is a continuous real-valued function between 0 and 1. The value of the sigmoid function represents the probability that the output is in class 0 or class 1:

  1. Let's denote the logistic sigmoid function with ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning

Python Deep Learning

Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants

Publisher Resources

ISBN: 9781789348460Supplemental Content