Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Chapter 2. Constructing a Classifier

In this chapter, we will cover the following recipes:

  • Building a simple classifier
  • Building a logistic regression classifier
  • Building a Naïve Bayes classifier
  • Splitting the dataset for training and testing
  • Evaluating the accuracy using cross-validation
  • Visualizing the confusion matrix
  • Extracting the performance report
  • Evaluating cars based on their characteristics
  • Extracting validation curves
  • Extracting learning curves
  • Estimating the income bracket

Introduction

In the field of machine learning, classification refers to the process of using the characteristics of data to separate it into a certain number of classes. This is different from regression that we discussed in the previous chapter where the output is a real number. ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link