Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Building a logistic regression classifier

Despite the word regression being present in the name, logistic regression is actually used for classification purposes. Given a set of datapoints, our goal is to build a model that can draw linear boundaries between our classes. It extracts these boundaries by solving a set of equations derived from the training data.

How to do it…

  1. Let's see how to do this in Python. We will use the logistic_regression.py file that is provided to you as a reference. Assuming that you imported the necessary packages, let's create some sample data along with training labels:
    import numpy as np from sklearn import linear_model import matplotlib.pyplot as plt X = np.array([[4, 7], [3.5, 8], [3.1, 6.2], [0.5, 1], [1, 2], [1.2, ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link