Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Summary

In this chapter, we covered a lot of ground. We began by introducing ensembles, some of the most powerful and popular techniques in competitive machine learning contexts. We covered both the theory and code needed to apply ensembles to our machine learning projects, using a combination of expert knowledge and practical examples.

In addition, this chapter also dedicates a section to discussing the unique considerations that arise when you run models for weeks and months at a time. We discussed what data change can mean, how to identify it, and how to think about guarding against it. We gave specific consideration to the question of how to create sets of models running in parallel, which you can switch between based on seasonal change or ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link