Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Summary

We've covered a lot of ground in this chapter! We began with an overview of Neural Networks, focusing on the general properties of topology and learning method before taking a deep dive into the RBM algorithm and RBM code itself. We took this solid understanding forward to create a DBN. In doing so, we linked the DBN theory and code together, before firing up our DBN to work over the MNIST dataset. We performed image classification in a 10-class problem and achieved an extremely competitive result, with classification error below 2%!

In the next chapter, we'll continue to build on your mastery of deep learning by introducing you to another deep learning architecture—Stacked Denoising Autoencoders (SDA).

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link