Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Chapter 9. Practical Machine Learning with Spark

In the previous chapter, we saw the main functionalities of data processing with Spark. In this chapter, we will focus on data science with Spark on a real data problem. During the chapter, you will learn the following topics:

  • How to share variables across a cluster's nodes
  • How to create DataFrames from structured (CSV) and semi-structured (JSON) files, save them on disk, and load them
  • How to use SQL-like syntax to select, filter, join, group, and aggregate datasets, thus making the preprocessing extremely easy
  • How to handle missing data in the dataset
  • Which algorithms are available out of the box in Spark for feature engineering and how to use them in a real case scenario
  • Which learners are available ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link