Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Building a Star feature detector

SIFT feature detector is good in many cases. However, when we build object recognition systems, we may want to use a different feature detector before we extract features using SIFT. This will give us the flexibility to cascade different blocks to get the best possible performance. So, we will use the Star feature detector in this case to see how to do it.

How to do it…

  1. Create a new Python file, and import the following packages:
    import sys
    
    import cv2
    import numpy as np 
  2. Define a class to handle all the functions that are related to Star feature detection:
    class StarFeatureDetector(object):
        def __init__(self):
            self.detector = cv2.xfeatures2d.StarDetector_create()
  3. Define a function to run the detector on the input image: ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link