Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Detecting SIFT feature points

Scale Invariant Feature Transform (SIFT) is one of the most popular features in the field of Computer Vision. David Lowe first proposed this in his seminal paper, which is available at https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf. It has since become one of the most effective features to use for image recognition and content analysis. It is robust against scale, orientation, intensity, and so on. This forms the basis of our object recognition system. Let's take a look at how to detect these feature points.

How to do it…

  1. Create a new Python file, and import the following packages:
    import sys
    
    import cv2
    import numpy as np 
  2. Load the input image. We will use table.jpg:
    # Load input image -- 'table.jpg' input_file = sys.argv[1] ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link