Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Chapter 6. Text Feature Engineering

Introduction

In preceding chapters, we've spent time assessing powerful techniques that enable the analysis of complex or challenging data. However, for the most difficult problems, the right technique will only get you so far.

The persistent challenge that deep learning and supervised learning try to solve for is that finding solutions often requires multiple big investments from the team in question. Under the old paradigm, one often has to perform specific preparation tasks, requiring time, specialist skills, and knowledge. Often, even the techniques used were domain-specific and/or data type-specific. This process, via which features are derived, is referred to as feature engineering.

Most of the deep learning ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link