Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Building Hidden Markov Models

We are now ready to discuss speech recognition. We will use Hidden Markov Models (HMMs) to perform speech recognition. HMMs are great at modeling time series data. As an audio signal is a time series signal, HMMs perfectly suit our needs. An HMM is a model that represents probability distributions over sequences of observations. We assume that the outputs are generated by hidden states. So, our goal is to find these hidden states so that we can model the signal. You can learn more about it at https://www.robots.ox.ac.uk/~vgg/rg/slides/hmm.pdf. Before you proceed, you need to install the hmmlearn package. You can find the installation instructions at http://hmmlearn.readthedocs.org/en/latest. Let's take a look at how ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link