Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Building a linear classifier using Support Vector Machine (SVMs)

SVMs are supervised learning models that are used to build classifiers and regressors. An SVM finds the best separating boundary between the two sets of points by solving a system of mathematical equations. If you are not familiar with SVMs, here are a couple of good tutorials to get started:

Let's see how to build a linear classifier using an SVM.

Getting ready

Let's visualize our data to understand the problem at hand. We will use svm.py that's already provided to you as a reference. Before we build the SVM, let's understand our data. We will use the data_multivar.txt ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link