Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Chapter 2. Deep Belief Networks

In the preceding chapter, we looked at some widely-used dimensionality reduction techniques, which enable a data scientist to get greater insight into the nature of datasets.

The next few chapters will focus on some more sophisticated techniques, drawing from the area of deep learning. This chapter is dedicated to building an understanding of how to apply the Restricted Boltzmann Machine (RBM) and manage the deep learning architecture one can create by chaining RBMs—the deep belief network (DBN). DBNs are trainable to effectively solve complex problems in text, image, and sound recognition. They are used by leading companies for object recognition, intelligent image search, and robotic spatial recognition.

The first ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link