Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Converting text to its base form using lemmatization

The goal of lemmatization is also to reduce words to their base forms, but this is a more structured approach. In the previous recipe, we saw that the base words that we obtained using stemmers don't really make sense. For example, the word "wolves" was reduced to "wolv", which is not a real word. Lemmatization solves this problem by doing things using a vocabulary and morphological analysis of words. It removes inflectional word endings, such as "ing" or "ed", and returns the base form of a word. This base form is known as the lemma. If you lemmatize the word "wolves", you will get "wolf" as the output. The output depends on whether the token is a verb or a noun. Let's take a look at how to ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link