Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Operating on time series data

Now that we know how to slice data and extract various subsets, let's discuss how to operate on time series data. You can filter the data in many different ways. The pandas library allows you to operate on time series data in any way that you want.

How to do it…

  1. Create a new Python file, and import the following packages:
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    
    from convert_to_timeseries import convert_data_to_timeseries
  2. We will use the same text file that we used in the previous recipe:
    # Input file containing data
    input_file = 'data_timeseries.txt'
  3. We will use both the third and fourth columns in this text file:
    # Load data data1 = convert_data_to_timeseries(input_file, 2) data2 = convert_data_to_timeseries(input_file, ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link