Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Performing blind source separation

Blind source separation refers to the process of separating signals from a mixture. Let's say a bunch of different signal generators generate signals and a common receiver receives all of these signals. Now, our job is to separate these signals from this mixture using the properties of these signals. We will use Independent Components Analysis (ICA) to achieve this. You can learn more about it at http://www.mit.edu/~gari/teaching/6.555/LECTURE_NOTES/ch15_bss.pdf. Let's see how to do it.

How to do it…

  1. Create a new Python file, and import the following packages:
    import numpy as np
    import matplotlib.pyplot as plt
    from scipy import signal
    
    from sklearn.decomposition import PCA, FastICA 
  2. We will use data from the mixture_of_signals.txt ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link