Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Chapter 3. Stacked Denoising Autoencoders

In this chapter, we'll continue building our skill with deep architectures by applying Stacked Denoising Autoencoders (SdA) to learn feature representations for high-dimensional input data.

We'll start, as before, by gaining a solid understanding of the theory and concepts that underpin autoencoders. We'll identify related techniques and call out the strengths of autoencoders as part of your data science toolkit. We'll discuss the use of Denoising Autoencoders (dA), a variation of the algorithm that introduces stochastic corruption to the input data, obliging the autoencoder to decorrupt the input and, in so doing, build a more effective feature representation.

We'll follow up on theory, as before, by walking ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link