Skip to Content
Python: Real World Machine Learning
book

Python: Real World Machine Learning

by Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
November 2016
Beginner to intermediate
941 pages
21h 55m
English
Packt Publishing
Content preview from Python: Real World Machine Learning

Summary

In this chapter, we have seen how learning is possible out-of-core by streaming data, no matter how big it is, from a text file or database on your hard disk. These methods certainly apply to much bigger datasets than the examples that we used to demonstrate them (which actually could be solved in-memory using non-average, powerful hardware).

We also explained the core algorithm that makes out-of-core learning possible—SGD—and we examined its strength and weakness, emphasizing the necessity of streams to be really stochastic (which means in a random order) to be really effective, unless the order is part of the learning objectives. In particular, we introduced the Scikit-learn implementation of SGD, limiting our focus to the linear and ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

Luca Massaron, Alberto Boschetti, Bastiaan Sjardin

Publisher Resources

ISBN: 9781787123212Supplemental ContentPurchase Link