Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Seeding random number generators and NumPy print options

For reproducible data analysis, we should prefer deterministic algorithms. Some algorithms use random numbers, but in practice we rarely use perfectly random numbers. The algorithms provided in numpy.random allow us to specify a seed value. For reproducibility, it is important to always provide a seed value but it is easy to forget. A utility function in sklearn.utils provides a solution for this issue.

NumPy has a set_printoptions() function, which controls how NumPy prints arrays. Obviously, printing should not influence the quality of your analysis too much. However, readability is important if you want people to understand and reproduce your results.

Getting ready

Install NumPy using the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content