Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Applying Scale-Invariant Feature Transform (SIFT)

The SIFT algorithm (1999) finds features in images or videos and is patented by the University of British Columbia. Typically, we can use the features for classification or clustering. SIFT is invariant with respect to translation, scaling, and rotation.

The algorithm's steps are as follows:

  1. Blur the image at different scales using a Gaussian blur filter.
  2. An octave corresponds to doubling the standard deviation of the filter. Group the blurred images by octave and difference them.
  3. Find the local extremas across the scale for the differenced images.
  4. Compare each pixel related to local extrema to the neighboring pixels in the same scale and neighboring scales.
  5. Select the largest or smallest value from ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content