Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Choosing seaborn color palettes

Seaborn color palettes are similar to matplotlib colormaps. Color can help you discover patterns in data and is an important visualization component. Seaborn has a wide range of color palettes, which I will try to visualize in this recipe.

How to do it...

  1. The imports are as follows:
    import seaborn as sns
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    import numpy as np
    from dautil import plotting
  2. Use the following function that helps plot the palettes:
    def plot_palette(ax, plotter, pal, i, label, ncol=1): n = len(pal) x = np.linspace(0.0, 1.0, n) y = np.arange(n) + i * n ax.scatter(x, y, c=x, cmap=mpl.colors.ListedColormap(list(pal)), s=200) plotter.plot(x,y, label=label) handles, labels = ax.get_legend_handles_labels() ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content