Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Examining a receiver operating characteristic and the area under a curve

The receiver operating characteristic (ROC) is a plot of the recall (10.3) and the false positive rate (FPR) of a binary classifier. The FPR is given by the following equation:

Examining a receiver operating characteristic and the area under a curve

In this recipe, we will plot the ROC for the various classifiers we used in Chapter 9, Ensemble Learning and Dimensionality Reduction. Also, we will plot the curve associated with random guessing and the ideal curve. Obviously, we want to beat the baseline and get as close as possible to the ideal curve.

The area under the curve (AUC, ROC AUC, or AUROC) is another evaluation metric that summarizes the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content