Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Visualizing the goodness of fit

We expect, or at least hope, that the residuals of regression are just random noise. If that is not the case, then our regressor may be ignoring information. We expect the residuals to be independent and normally distributed. It is relatively easy to check with a histogram or a QQ plot. In general, we want the mean of the residuals to be as close to zero as possible, and we want the variance of the residuals to be as small as possible. An ideal fit will have zero-valued residuals.

How to do it...

  1. The imports are as follows:
    import numpy as np
    import matplotlib.pyplot as plt
    import dautil as dl
    import seaborn as sns
    from scipy.stats import probplot
    from IPython.display import HTML
  2. Load the target and predictions for ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content