Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Stacking and majority voting for multiple models

It is generally believed that two people know more than one person alone. A democracy should work better than a dictatorship. In machine learning, we don't have humans making decisions, but algorithms. When we have multiple classifiers or regressors working together, we speak of ensemble learning.

There are many ensemble learning schemes. The simplest setup does majority voting for classification and averaging for regression. In scikit-learn 0.17, you can use the VotingClassifier class to do majority voting. This classifier lets you emphasize or suppress classifiers with weights.

Stacking takes the outputs of machine learning estimators and then uses those as inputs for another algorithm. You can, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content