Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Using arbitrary precision for linear algebra

A lot of models can be reduced to systems of linear equations, which are the domain of linear algebra. The mpmath library mentioned in the Using arbitrary precision for optimization recipe can do arbitrary precision linear algebra too.

Theoretically, we can approximate any differentiable function as a polynomial series. To find the coefficients of the polynomial, we can define a system of linear equations, basically taking powers of a data vector (vector as mathematical term) and using a vector of ones to represent the constant in the polynomial. We will solve such a system with the mpmath lu_solve() function. As example data, we will use wind speed data grouped by the day of year.

Getting ready

For the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content