Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Applying principal component analysis for dimension reduction

Principal component analysis (PCA), invented by Karl Pearson in 1901, is an algorithm that transforms data into uncorrelated orthogonal features called principal components. The principal components are the eigenvectors of the covariance matrix.

Sometimes, we get better results by scaling the data prior to applying PCA, although this is not strictly necessary. We can interpret PCA as projecting data to a lower dimensional space. Some of the principal components contribute relatively little information (low variance); therefore, we can omit them. We have the following transformation:

Applying principal component analysis for dimension reduction
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content