Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Fitting aggregated counts to the Poisson distribution

The Poisson distribution is named after the French mathematician Poisson, who published a thesis about it in 1837. The Poisson distribution is a discrete distribution usually associated with counts for a fixed interval of time or space. It is only defined for integer values k. For instance, we could apply it to monthly counts of rainy days. In this case, we implicitly assume that the event of a rainy day occurs at a fixed monthly rate. The goal of fitting the data to the Poisson distribution is to find the fixed rate.

The following equations describe the probability mass function (3.5) and rate parameter (3.6) of the Poisson distribution:

How to do it...

The following steps fit using the maximum ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content