Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Fitting noisy data with the RANSAC algorithm

We discussed the issue of outliers in the context of regression elsewhere in this book (refer to the See also section at the end of this recipe). The issue is clear—the outliers make it difficult to properly fit our models. The RANdom SAmple Consensus algorithm (RANSAC) does a best effort attempt to fit our data in an iterative manner. RANSAC was introduced by Fishler and Bolles in 1981.

We often have some knowledge about our data, for instance the data may follow a normal distribution. Or, the data may be a mix produced by multiple processes with different characteristics. We could also have abnormal data due to glitches or errors in data transformation. In such cases, it should be easy to identify ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content