Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Determining confidence intervals for mean, variance, and standard deviation

It is sometimes useful to imagine that the data we observe is just the tip of an iceberg. If you get into this mindset, then you probably will want to know how big this iceberg actually is. Obviously, if you can't see the whole thing, you can still try to extrapolate from the data you have. In statistics we try to estimate confidence intervals, which are an estimated range usually associated with a certain confidence level quoted in percentages.

The scipy.stats.bayes_mvs() function estimates confidence intervals for mean, variance, and standard deviation. The function uses Bayesian statistics to estimate confidence assuming that the data is independent and normally distributed. ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content