Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Analyzing peaks

The analysis of peaks is similar to that of valleys, since both are extreme values. SciPy has the argrelmax() function that finds the relative maxima. When we apply this function to daily temperature values, it not only finds hot days in summer but also hot days in winter unless we make the function consider a larger time frame. Of course, we can also check whether values are above a threshold or only select summer data using prior knowledge.

When we analyze peaks in time series data, we can apply two approaches. The first approach is to consider the highest peaks in a year, a month, or another fixed time interval and build a series with those values. The second approach is to define any value above a threshold as a peak. In this ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content