Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Quantizing colors

In ancient times, computer games were practically monochromatic. Many years later, the Internet allowed us to download images, but the Web was slow, so compact images with few colors were preferred. We can conclude that restricting the number of colors is traditional. Color is a dimension of images, so we can speak of dimensionality reduction if we remove colors from an image. The actual process is called color quantization.

Usually, we represent RGB (red, green, and blue) values in three-dimensional space for each pixel and then cluster the points. For each cluster, we are left with a corresponding average color. In this recipe, we will use k-means clustering (refer to the Clustering streaming data with Spark recipe), although ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content