Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Taking variance into account with weighted least squares

The statsmodels library allows us to define arbitrary weights per data point for regression. Outliers are sometimes easy to spot with simple rules of thumbs. One of these rules of thumb is based on the interquartile range, which is the difference between the first and third quartile of data. With the interquartile ranges, we can define weights for the weighted least squares regression.

We will use the data and model from Fitting a robust linear mode, but with arbitrary weights. The points we suspect are outliers will get a lower weight, which is the inverse of the interquartile range values just mentioned.

How to do it...

Fit the data with weighted least squares using the following method: ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content