Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Fitting a robust linear model

Robust regression is designed to deal better with outliers in data than ordinary regression. This type of regression uses special robust estimators, which are also supported by statsmodels. Obviously, there is no best estimator, so the choice of estimator depends on the data and the model.

In this recipe, we will fit data about annual sunspot counts available in statsmodels. We will define a simple model where the current count depends linearly on the previous value. To demonstrate the effect of outliers, I added a pretty big value and we will compare the robust regression model and an ordinary least squares model.

How to do it...

The following steps describe how to apply the robust linear model:

  1. The imports are as follows: ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content