Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Calculating social network closeness centrality

In a social network such as the Facebook SPAN data, we will have influential people. In graph terminology, these are the influential nodes. Centrality finds features of important nodes. Closeness centrality uses shortest paths between nodes as a feature, as shown in the following equation:

Calculating social network closeness centrality

In (8.3), d(u, v) is the shortest path between u, v, and n is the number of nodes. An influential node is close to other nodes and, therefore, the sum of the shortest paths is low. We can compute closeness centrality for each node separately, and for a large graph, this can be a lengthy calculation. NetworkX allows ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content