Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Sampling with probability weights

To create the nuclear bomb during the Second World War, physicists needed to perform pretty complicated calculations. Stanislaw Ulam got the idea to treat this challenge as a game of chance. Later, the method he came up with was given the code name Monte Carlo. Games of chance usually have very simple rules, but playing in an optimal way can be difficult. According to quantum mechanics, subatomic particles are also unpredictable. If we simulate many experiments with subatomic particles, we still can get an idea of how they are likely to behave. The Monte Carlo method is not deterministic, but it approaches the correct result for a complex computation for a sufficiently large number of simulations.

The statsmodels.distributions.empirical_distribution.ECDF ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content