Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Using arbitrary precision for optimization

The intended readers of this book should be aware of floating point number issues. I will remind you that we are not able to represent floating point numbers exactly. Even integer representation is limited. For certain applications, for instance financial calculations or work involving known analytic expressions, we need a higher precision than available with numerical software such as NumPy. The Python standard library provides the Decimal class, which we can use to achieve arbitrary precision. However, the specialized mpmath library is a better fit for more advanced use.

Temperature follows a seasonal pattern, so a model involving the cosine seems natural. We will apply such a model. The nice thing about ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content