Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Applying linear discriminant analysis for dimension reduction

Linear discriminant analysis (LDA) is an algorithm that looks for a linear combination of features in order to distinguish between classes. It can be used for classification or dimensionality reduction by projecting to a lower dimensional subspace. LDA requires a target attribute both for classification and dimensionality reduction.

If we represent class densities as multivariate Gaussians, then LDA assumes that the classes have the same covariance matrix. We can use training data to estimate the parameters of the class distributions.

In scikit-learn, lda.LDA has been deprecated in 0.17 and renamed discriminant_analysis.LinearDiscriminantAnalysis. The default solver of this class uses ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content