Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

How to train and tune a random forest

The key configuration parameters include the various hyperparameters for the individual decision trees introduced in the section How to tune the hyperparameters. The following tables lists additional options for the two RandomForest classes:

Keyword Default Description
bootstrap True Bootstrap samples during training.
n_estimators 10 Number of trees in the forest.
oob_score False Uses out-of-bag samples to estimate the R2 on unseen data.

The bootstrap parameter activates in the preceding bagging algorithm outline, which in turn enables the computation of the out-of-bag score (oob_score) that estimates the generalization accuracy using samples not included in the bootstrap sample used to train ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content