Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

How word embeddings encode semantics

The bag-of-words model represents documents as vectors that reflect the tokens they contain. Word embeddings represent tokens as lower dimensional vectors so that their relative location reflects their relationship in terms of how they are used in context. They embody the distributional hypothesis from linguistics that claims words are best defined by the company they keep.

Word vectors are capable of capturing numerous semantic aspects; not only are synonyms close to each other, but words can have multiple degrees of similarity, for example, the word driver could be similar to motorist or to cause. Furthermore, embeddings reflect relationships among pairs of words such as analogies (Tokyo is to Japan ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content