Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Regularization

All libraries implement the regularization strategies for base learners, such as minimum values for the number of samples or the minimum information gain required for splits and leaf nodes.

They also support regularization at the ensemble level using shrinkage via a learning rate that constrains the contribution of new trees. It is also possible to implement an adaptive learning rate via callback functions that lower the learning rate as the training progresses, as has been successfully used in the context of neural networks. Furthermore, the gradient boosting loss function can be regularized using L1 or L2, regularization similar to the Ridge and Lasso linear regression models by modifying Ω(hm) or by increasing the penalty ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content