Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Latent semantic indexing

Latent Semantic Indexing (LSI, also called Latent Semantic Analysis) sets out to improve the results of queries that omitted relevant documents containing synonyms of query terms. It aims to model the relationships between documents and terms to be able to predict that a term should be associated with a document, even though, because of variability in word use, no such association was observed.

LSI uses linear algebra to find a given number, k, of latent topics by decomposing the DTM. More specifically, it uses Singular Value Decomposition (SVD) to find the best lower-rank DTM approximation using k singular values and vectors. In other words, LSI is an application of the unsupervised learning techniques of dimensionality ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content