Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Receiver operating characteristics and the area under the curve

The receiver operating characteristics (ROC) curve allows us to visualize, organize, and select classifiers based on their performance. It computes all the combinations of true positive rates (TPR) and false positive rates (FPR) that result from producing predictions using any of the predicted scores as a threshold. It then plots these pairs on a square, the side of which has a measurement of one in length.

A classifier that makes random predictions (taking into account class imbalance) will on average yield TPR and FPR that are equal so that the combinations will lie on the diagonal, which becomes the benchmark case. Since an underperforming classifier would benefit from relabeling ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content