December 2018
Beginner to intermediate
684 pages
21h 9m
English
We then proceed to cross-validate the hyperparameter values again using 250 folds as follows:
nfolds = 250alphas = np.logspace(-5, 5, 21)scaler = StandardScaler()ridge_result, ridge_coeffs = pd.DataFrame(), pd.DataFrame()for i, alpha in enumerate(alphas): coeffs, test_results = [], [] lr_ridge = Ridge(alpha=alpha) for train_dates, test_dates in time_series_split(dates, nfolds=nfolds): X_train = model_data.loc[idx[train_dates], features] y_train = model_data.loc[idx[train_dates], target] lr_ridge.fit(X=scaler.fit_transform(X_train), y=y_train) coeffs.append(lr_ridge.coef_) X_test = model_data.loc[idx[test_dates], features] y_test = model_data.loc[idx[test_dates], target] y_pred = ...