Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Summary

In this chapter, we explored unsupervised learning methods that allow us to extract valuable signal from our data, without relying on the help of outcome information provided by labels.

We saw how we can use linear dimensionality reduction methods, such as PCA and ICA, to extract uncorrelated or independent components from the data that can serve as risk factors or portfolio weights. We also covered advanced non-linear manifold learning techniques that produce state-of-the-art visualizations of complex alternative datasets.

In the second part, we covered several clustering methods that produce data-driven groupings under various assumptions. These groupings can be useful, for example, to construct portfolios that apply risk-parity ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content