Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Seeking signals – how to use zipline

Historically, alpha factors used a single input and simple heuristics, thresholds or quantile cutoffs to identify buy or sell signals. ML has proven quite effective in extracting signals from a more diverse and much larger set of input data, including other alpha factors based on the analysis of historical patterns. As a result, algorithmic trading strategies today leverage a large number of alpha signals, many of which may be weak individually but can yield reliable predictions when combined with other model-driven or traditional factors by an ML algorithm.

The open source zipline library is an event-driven backtesting system maintained and used in production by the crowd-sourced quantitative investment ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content