Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Variational Inference

Variational Inference (VI) is a machine learning method that approximates probability densities through optimization. In the Bayesian context, it approximates the posterior distribution as follows:

  1. Select a parametrized family of probability distributions
  2. Find the member of this family closest to the target, as measured by Kullback-Leibler divergence

Compared to MCMC, Variational Bayes tends to converge faster and scales to large data better. While MCMC approximates the posterior with samples from the chain that will eventually converge arbitrarily close to the target, variational algorithms approximate the posterior with the result of the optimization, which is not guaranteed to coincide with the target.

Variational ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content