Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Fundamental approaches to solving RL problems

There are numerous approaches to solving RL problems, all of which invole finding rules for the agent's optimal behavior:

  • Dynamic programming (DP) methods make the often unrealistic assumption of complete knowledge of the environment, but are the conceptual foundation for most other approaches.
  • Monte Carlo (MC) methods learn about the environment and the costs and benefits of different decisions by sampling entire state-action-reward sequences.
  • Temporal difference (TD) learning significantly improves sample efficiency by learning from shorter sequences. To this end, it relies on bootstrapping, which is defined as refining its estimates based on its own prior estimates.

When the RL problem outlined ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content