Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

PCA based on the covariance matrix

We first compute the principal components using the square covariance matrix with the pairwise sample covariances for the features xi, xj, i, j = 1, ..., n as entries in row i and column j:

For a square matrix M of n dimensions, we define the eigenvectors ωi and eigenvalues λi, i=1, ..., n as follows:

Hence, we can represent the matrix M using eigenvectors and eigenvalues, where W is a matrix that contains the eigenvectors as column vectors, and L is a matrix that contains the λi as diagonal entries (and 0s ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content