Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

How to build ARIMA models and extensions

Autoregressive integrated moving-average ARIMA(p, d, q) models combine AR(p) and MA(q) processes to leverage the complementarity of these building blocks and simplify model development by using a more compact form and reducing the number of parameters, in turn reducing the risk of overfitting.

The models also take care of eliminating unit-root nonstationarity by using the dth difference of the time series values. An ARIMA(p, 1, q) model is the same as using an ARMA(p, q) model with the first differences of the series. Using y' to denote the original series after non-seasonal differencing d times, the ARIMA(p, d, q) model is simply:

ARIMA models are also estimated using Maximum Likelihood. Depending ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content