Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Learning parameters

Gradient boosting models typically use decision trees to capture feature interaction, and the size of individual trees is the most important tuning parameter. XGBoost and CatBoost set the max_depth default to 6. In contrast, LightGBM uses a default num_leaves value of 31, which corresponds to five levels for a balanced tree, but imposes no constraints on the number of levels. To avoid overfitting, num_leaves should be lower than 2max_depth. For example, for a well-performing max_depth value of 7, you would set num_leaves to 70–80 rather than 27=128, or directly constrain max_depth.

The number of trees or boosting iterations defines the overall size of the ensemble. All libraries support early_stopping to abort training ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content