December 2018
Beginner to intermediate
684 pages
21h 9m
English
The generator network is slightly shallower but has more than twice as many parameters:
def build_generator(): model = Sequential([ Dense(128 * 7 * 7, activation='relu', input_dim=latent_dim), Reshape((7, 7, 128)), UpSampling2D(), Conv2D(128, kernel_size=3, padding='same'), BatchNormalization(momentum=0.8), Activation('relu'), UpSampling2D(), Conv2D(64, kernel_size=3, padding='same'), BatchNormalization(momentum=0.8), Activation('relu'), Conv2D(channels, kernel_size=3, padding='same'), Activation('tanh')]) model.summary() noise = Input(shape=(latent_dim,)) img = model(noise) return Model(noise, img)